Just a quick, useless recap What happened last semester! ### The Curse of Hamilton's Chairs **Ahmed Shalaby** 2nd year PhD Let's discover the rules of the game How many different configurations we will have? $$(K+1)^N$$ (Exponential in the # of chairs) $$E(X) = sit(Emma) + sit(Yc) + sit(Akash) + handshake(Emma, Yc) + 3 * sit_convincing_cost.$$ + + $$E(X) = \sum_{p \in X} \operatorname{sit}(p) + \sum_{p_i, p_{i+1} \in X} \operatorname{handshake}(p_i, p_{i+1}) + l * \operatorname{sit_convincing_cost.}$$ configuration X of size l PhD students We further assume the following: • $|sit(p)| > |sit_convincing_cost|$. (Damien always gains by convincing a PhD student to sit) #### When you don't set your boundaries #### When you don't set your boundaries #### When you don't set your boundaries Ahmed Shalaby 2nd year PhD How I discovered that my supervisor is actually a Ahmed Shalaby 2nd year PhD How I discovered that my supervisor is actually a **VAMPIRE**. Ahmed Shalaby 2nd year PhD How I discovered that my supervisor is actually a VAMPIRE An efficient minimum free energy algorithm for interacting nucleic acid strands Ahmed Shalaby 2nd year PhD Let's discover the rules of the game Abstract Algebra Graph theory Algorithm analysis Abstract Algebra Graph theory • Algorithm analysis Abstract Algebra Graph theory Algorithm analysis Abstract Algebra Graph theory Algorithm analysis Abstract Algebra Graph theory Algorithm analysis # Ahmed's goal PI ? 5 5 ## Ahmed's goal - What is his mindset? - What he prefers? PI ? 7 3 ## Ahmed's goal Modelling - What is his mindset? - What he prefers?, **Computation** PI 7 7 ### **Once Upon a Time in Hamilton** ## **Once Upon a Time in Hamilton** Email From Rosemary Kate # Level 1 ## **Hamilton game** #### First year Daniel Augustina . ### **Second year** Ahmed Andre Paddy Cormac . ### **Third year** Dara Solmaz Oluwayomi • ### fourth year Akash Yc Emma Darshana #### First year Daniel Augustina • ### **Second year** Ahmed Andre Paddy Cormac . ### **Third year** Dara Solmaz Oluwayomi • ### fourth year Akash Yc Emma Darshana . Don't trust our new lab #### First year Daniel Augustina . #### **Second year** Ahmed Andre Paddy Cormac . #### **Third year** Dara Solmaz Oluwayomi ### fourth year Akash Yc Emma Darshana • #### Don't trust our new lab Akash Akash Akash Akash • Dara Dara Dara Dara . Darshana Darshana Darshana Darshana Fergal Fergal Fergal Fergal . • • • #### First year Daniel Augustina #### **Second year** Ahmed Andre Paddy Cormac #### **Third year** Dara Solmaz Oluwayomi #### fourth year Akash Yc Emma Darshana #### Don't trust our new lab Akash Akash Akash Akash Dara Dara Dara Dara Darshana Darshana Darshana Darshana Fergal Fergal Fergal Fergal #### First year Daniel Augustina #### **Second year** Ahmed Andre Paddy Cormac #### **Third year** Dara Solmaz Oluwayomi ### fourth year Akash Yc Emma Darshana #### Don't trust our new lab Akash Akash Akash Akash Dara Dara Dara Dara Darshana Darshana Darshana Darshana Fergal Fergal Fergal Fergal #### First year Daniel Augustina • #### **Second year** Ahmed Andre Paddy Cormac #### **Third year** Dara Solmaz Oluwayomi fourth year Akash Yc Emma Darshana • #### Don't trust our new lab Akash Akash Akash Akash • Dara Dara Dara Dara . Darshana Darshana Darshana Darshana Fergal Fergal Fergal Fergal . • • • • If you kill, you are safe • If you kill, you are safe • If you kill, you are safe - If you kill, you are safe - You can only kill one student, you have only one bullet - If you kill, you are safe - You can only kill one student, you have only one bullet - If you kill, you are safe - You can only kill one student, you have only one bullet - You can be killed once - If you kill, you are safe - You can only kill one student, you have only one bullet - You can be killed once - If you kill, you are safe - You can only kill one student, you have only one bullet - You can be killed once - You must respect other killers, you can't cross their killing lines - If you kill, you are safe - You can only kill one student, you have only one bullet - You can be killed once You must respect other killers, you can't cross their killing lines - If you kill, you are safe - You can only kill one student, you have only one bullet - You can be killed once - You must respect other killers, you can cross their killing line - Ahmed can only kill, he's an immortal man - If you kill, you are safe - You can only kill one student, you have only one bullet - You can be killed once - You must respect other killers, you can cross their killing line - Ahmed can only kill, he's an immortal man ### Structure *S* ### Structure *S* $$\# = \binom{9}{0} + \binom{9}{1} + \dots + \binom{9}{9} = 2^9 = 2^{N/2}$$ $$\# = \binom{9}{0} + \binom{9}{1} + \dots + \binom{9}{9} = 2^9 = 2^{N/2}$$ Ω : the set of all possible structures that respect the game rules $$# = {9 \choose 0} + {9 \choose 1} + ... + {9 \choose 9} = 2^9 = 2^{N/2}$$ Ω : the set of all possible structures that respect the game rules S_1 **Not cool** **Getting better** **Not cool** # Ahmed's goal ``` PI Loves more blood ``` ? Ş Ş That is so cool! That is so cool! Some Criteria/Model ? $$B(S) = \#killed PhDs$$ That is so cool! That is so cool! ### Some Criteria/Model $$B(S) = \# killed PhDs$$ $\max_{S \in \Omega} B(S)$ Ω is the set of all possible structures that respect the game rules How to compute this fast? # Level 2 ### Ahmed's goal ``` PI Loves high quality blood ``` ? ? 5 # Ahmed's goal Loves high quality blood **Loves mixed blood** ? ? $$B(S) = \sum_{l} B(l)$$ $$B(S) = \sum_{l} B(l)$$ $\max_{S \in \Omega} B(S)$ How to compute this fast? # Level 3 ### c = 3 sofas ### c = 3 sofas # c = 3 sofas That is so bad! # Ahmed's goal PI Loves high quality blood Loves mixed blood Hates disconnectedness ? Ω : the set of all <u>connected</u> structures that respect the game rules Ω : the set of all <u>connected</u> structures that respect the game rules $$B(S) = \sum_{l} B(l) - (c - 1) B^{\text{assoc}}$$ Ω : the set of all <u>connected</u> structures that respect the game rules $$B(S) = \sum_{l} B(l) - (c - 1) B^{\text{assoc}}$$ $\max_{S \in \Omega} B(S)$ Ω : the set of all <u>connected</u> structures that respect the game rules How to compute this fast? # Level 4 That is ok! That is ugh! That is ugh ugh! **Rotate by 180 degrees** **Rotate by 180 degrees** **Rotate by 180 degrees** **Rotate by 90 degrees** **Rotate by 180 degrees** $$R=2$$ **Rotate by 90 degrees** $$R=4$$ R = 1 Doesn't penalize **Rotate by 180 degrees** $$R=2$$ Penalize a little bit **Rotate by 90 degrees** $$R=4$$ **Penalize more** ### Ahmed's goal PI Loves high quality blood Loves mixed blood Hates disconnectedness Hates rotational symmetry Some Criteria/Model ? ## Some Criteria/Model ? $$B(S) = \sum_{l} B(l) - (c - 1)B^{\text{assoc}} - k_B T * \log R$$ ### Some Criteria/Model $$B(S) = \sum_{l} B(l) - (c - 1)B^{\text{assoc}} - k_B T * \log R$$ $\max_{S \in \Omega} B(S)$ How to compute this fast? ## We are done # Hamilton game ## Why ## Why, Ahmed? First year **Second year** **Third year** fourth year Daniel Augustina . Ahmed Andre Paddy Cormac • Dara Solmaz Oluwayomi • Akash Yc Emma Darshana • ### **Chemical bonds** ### **DNA** secondary structures #### **Chemical bonds** ### **DNA** secondary structure Single stranded DNA NP - Hard Secondary structure A list of base pairs pseudoknot-free Polymer graph representation pseudoknotted #### **Energy models and Minimum Free Energy** #### Single stranded system #### Multi stranded system of s strands #### **Energy models and Minimum Free Energy** #### Single stranded system Energy model Capture the free energy of secondary structure #### Multi stranded system of *s* strands #### **Energy models and Minimum Free Energy** #### Single stranded system **Energy model** Capture the free energy of secondary structure #### Multi stranded system of *s* strands That is so cool! ### Some Criteria/Model ? $$B(S) = \#killed PhDs$$ $\max_{S \in \Omega} B(S)$ Ω is the set of all possible structures that respect the game rules $$\Delta G(S) = -\text{\#base pairs}$$ $\min_{S \in \Omega} \Delta G(S)$ Ω is the set of all possible structures that respect the game rules $$\Delta G(S) = -\text{\#base pairs}$$ $\min_{S \in \Omega} \Delta G(S)$ Ω is the set of all possible structures that respect the game rules $$B(S) = \sum_{l} B(l)$$ $\max_{S \in \Omega} B(S)$ $$\Delta G(S) = \sum_{l} \Delta G(l)$$ $\min_{S \in \Omega} \Delta G(S)$ $$\Delta G(S) = \sum_{l} \Delta G(l)$$ $\min_{S \in \Omega} \Delta G(S)$ $$B(S) = \sum_{l} B(l) - (c - 1) B^{\text{assoc}}$$ $\max_{S \in \Omega} B(S)$ Ω : the set of all <u>connected</u> structures that respect the game rules c = 3 strands 3 ### Some Criteria/Model ? $$\Delta G(S) = \sum_{l} \Delta G(l) + (c - 1) \Delta G^{\text{assoc}}$$ $\min_{S \in \Omega} \Delta G(S)$ Ω : the set of all <u>connected</u> structures that respect the game rules c = 3 strands 3 ### Some Criteria/Model ? $$\Delta G(S) = \sum_{l} \Delta G(l) + (c - 1) \Delta G^{\text{assoc}}$$ $\min_{S \in \Omega} \Delta G(S)$ Ω : the set of all <u>connected</u> structures that respect the game rules How to compute this fast? 65 Yes $$B(S) = \sum_{l} B(l) - (c - 1)B^{\text{assoc}} - k_B T * \log R$$ $\max_{S \in \Omega} B(S)$ #### c = 4 strands # Some Criteria/Model ? $$\Delta G(S) = \sum_{l} \Delta G(l) + (c - 1)\Delta G^{assoc} + k_B T * \log R$$ $\min_{S \in \Omega} \Delta G(S)$ #### c = 4 strands ### Some Criteria/Model ? $$\Delta G(S) = \sum_{l} \Delta G(l) + (c - 1)\Delta G^{assoc} + k_B T * \log R$$ $\min_{S \in \Omega} \Delta G(S)$ How to compute this fast? No, till now $$\Delta G(S) = \sum_{l \in S} \Delta G(l) + (c - 1) * \Delta G^{assoc} + k_B T * log R + k_B T * log R$$ **Fig. 2.2** Sample secondary structures and polymer graphs for a complex of four indistinguishable strands. (a) 1-fold (i.e., no) rotational symmetry. (b) 2-fold rotational symmetry. (c) 4-fold rotational symmetry. | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded (≤ c) | ? | N bases, c strands | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded ($\leq c$) | ? | N bases, c strands Open problem for $\approx 20 \ \text{years}$ # Why symmetry makes that difference? ### Why symmetry makes that difference? # Entropy # △G Free energy # ΔG Free energy **Enthalpy Entropy** Increasing Entropy $$S = k_B \log \Pi$$ $$S = k_B \log \Pi$$ The total number of states of the N magnets is $\Pi = 2^N$ $$S = k_B \log \Pi$$ That is ugh ugh! $$\Delta G(S) = \sum_{l \in S} \Delta G(l) + (c - 1) * \Delta G^{\text{assoc}} + k_B T * log R$$ **Fig. 2.2** Sample secondary structures and polymer graphs for a complex of four indistinguishable strands. (a) 1-fold (i.e., no) rotational symmetry. (b) 2-fold rotational symmetry. (c) 4-fold rotational symmetry. # Why is this difficult? | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded ($\leq c$) | ? | N bases, c strands | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded ($\leq c$) | ? | N bases, c strands All of these are dynamic programming algorithms | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded (≤ c) | ? | N bases, c strands All of these are dynamic programming algorithms Subproblems Big problem | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded ($\leq c$) | ? | N bases, c stran Subproblems Big problem | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | O(N3) | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded ($\leq c$) | ? | | | | | N bases, c strand Subproblems Big problem | Level | Input Type | MFE | |-------|---------------------------------------------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | $\text{Multiple } \underline{\text{unique}} \text{ Strands, Bounded } (\leq c)$ | $O(N^3(c-1)!)$ | | 4 | $\text{Multiple Strands, Bounded } (\leq c)$ | ? | | | | | N bases, c strands Subproblems Big problem **Global property** | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | $\text{Multiple Strands, Bounded } (\leq c)$ | ? | | | | | **Global property** | Louis | In contract The co | AAFF | |-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------| | Level | Input Type | MFE | | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | O(N3) | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | $\text{Multiple Strands, Bounded } (\leq c)$ | ? | | | | | ### **Computational complexity of Minimum Free Energy algorithms** | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded ($\leq c$) | ? | $$B(S) = \sum_{l} B(l) - (c - 1) B^{\text{assoc}}$$ ## **Computational complexity of Minimum Free Energy algorithms** | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded ($\leq c$) | ? | $$B(S) = \sum_{l} B(l) - (c - 1) B^{\text{assoc}}$$ $$B(S) = \sum_{l} B(l) - (c - 1)B^{\text{assoc}} - \mathbf{k_B}T * \mathbf{log}R$$ ## Let's ignore the symmetry for a while ## Is there any hope? # TAKE A BREAK ## Yasso ## Last summer, we went to Japan ## Minimum Free Energy, Partition Function and Kinetics Simulation Algorithms for a Multistranded Scaffolded DNA Computer #### Ahmed Shalaby □ □ Hamilton Institute, Department of Computer Science, Maynooth University, Ireland #### Chris Thachuk ⊠ • Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA #### Damien Woods □ Hamilton Institute, Department of Computer Science, Maynooth University, Ireland Ahmed Shalaby □ □ Hamilton Institute, Department of Computer Science, Maynooth University, Ireland Chris Thachuk **□** • Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA Hamilton Institute, Department of Computer Science, Maynooth University, Ireland ## Welcome home ## **Yasso loves** S_x Symmetric S_y Symmetric S_x Symmetric $B(S_y)$ S_z Asymmetric S_x and S_y Admissible cut S_y Symmetric # The sandwich theorem of secondary structures # Does this solve the problem? ## **Upper bound** $$\frac{N-c}{v(\pi)}(\sigma(v(\pi))-v(\pi))$$ S_z ### **Upper bound** $$\frac{N-c}{v(\pi)}(\sigma(v(\pi))-v(\pi))$$ $$N^2/16$$ ▶ Lemma 28. For any two 2-fold rotational symmetric secondary structures, the maximum number of all distinct central internal loops is $\sum_{s \in y} (\|A\|_s \|T\|_s + \|G\|_s \|C\|_s - \mathcal{I}_s) \le N^2/16$, where $\pi = y^2$, and \mathcal{I}_s is an indicator function such that $\mathcal{I}_s = \begin{cases} 1 & c > 2 \text{ and } s(1) = \overline{s(|s|)}. \\ 0 & \text{otherwise} \end{cases}$ #### **Computational complexity of Minimum Free Energy algorithms** | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded ($\leq c$) | ? | N bases, c strands Open problem for $\approx 20 \ \text{years}$ #### **Computational complexity of Minimum Free Energy algorithms** | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded (≤ c) | $O(N^4(c-1)!)$ | N bases, c strands #### **Computational complexity of Minimum Free Energy algorithms** | Level | Input Type | MFE | |-------|-----------------------------------------------|----------------| | 1 | Single Strand (Maximum matching) | $O(N^3)$ | | 2 | Single Strand (Loop model) | $O(N^3)$ | | 3 | Multiple unique Strands, Bounded ($\leq c$) | $O(N^3(c-1)!)$ | | 4 | Multiple Strands, Bounded ($\leq c$) | $O(N^4(c-1)!)$ | # **Thanks** dna.hamilton.ie dna.hamilton.ie/shalaby # **Thanks** dna.hamilton.ie dna.hamilton.ie/shalaby